Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dicalcium heptagermanate $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ revised

Günther J. Redhammer, ${ }^{\text {a* }}$ Georg Roth ${ }^{\text {b }}$ and Georg Amthauer ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Materials Engineering and Physics, Division of Mineralogy, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria, and
${ }^{\mathbf{b}}$ Institute of Crystallography, RWTH Aachen University, Jägerstrasse 17/19, D-52056 Aachen, Germany
Correspondence e-mail: guenther.redhammer@aon.at

Received 30 March 2007
Accepted 8 May 2007
Online 14 June 2007
The structure of dicalcium heptagermanate, previously described with an orthorhombic space group, has been redetermined in the tetragonal space group $P \overline{4} b 2$. It contains three Ge positions (site symmetry $1, . .2$ and 2.22 , respectively), one Ca position (..2) and four O atoms, all on general $8 i$ positions (site symmetry 1). A sheet of four-membered rings of Ge tetrahedra (with Ge on the $8 i$ position) and isolated Ge tetrahedra (Ge on the $4 g$ position) alternate with a sheet of Ge octahedra (Ge on the $2 d$ position) and eightfold-coordinated Ca sites along the c direction in an $A B A B A \ldots$ sequence. The three-dimensional framework of Ge sites displays a channellike structure, evident in a projection on to the $a b$ plane.

Comment

In the system $\mathrm{CaO}-\mathrm{GeO}_{2}$, several phases are reported in the phase-equilibrium studies of Eulenberger et al. (1962) and Shirvinskaya et al. (1966), among them the Ge-rich phase $\mathrm{CaGe}_{4} \mathrm{O}_{9}$. Another Ge-rich phase is mentioned by Nevskii et al. (1979), namely $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$. While the crystal structure of the first phase appears to be unknown at first glance, the latter was determined by Nevskii et al. (1979) to be orthorhombic [Pba2, $a=11.340$ (2) $\AA, b=11.340$ (2) \AA and $c=4.6400$ (8) \AA]. In order to investigate $\mathrm{CaGe}_{4} \mathrm{O}_{9}$ in more detail and to determine its crystal structure, we attempted to synthesize this compound using ceramic sintering techniques between 1273 and 1473 K . However, we always identified very well crystallized $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ and small amounts of GeO_{2}. In addition, under hydrothermal conditions (923 K and 0.2 GPa), the stable phases are $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ and GeO_{2} (when starting with $\mathrm{CaGe}_{4} \mathrm{O}_{9}$ composition). These findings led us to conclude that, in the phase diagram $\mathrm{CaO}-\mathrm{GeO}_{2}$, the compound $\mathrm{CaGe}_{4} \mathrm{O}_{9}$ may not exist but has to be replaced by $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$. This is supported by the fact that $\mathrm{Cd}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ was also described as ' $\mathrm{CdGe}_{4} \mathrm{O}_{9}$ ' in the literature (Wittmann 1966) until Plattner \& Völlenkle (1977) evaluated its true chemistry by structure determination. This Cd compound is tetragonal, with $a=$
$11.31 \AA$ and $c=4.63 \AA$ (space group $P \overline{4} b 2$). Germanates with $A B_{4} X_{9}$, such as $\mathrm{SrGe}_{4} \mathrm{O}_{9}$ (Nishi, 1996), $\mathrm{BaGe}_{4} \mathrm{O}_{9}$ (Shashkov et al., 1984) and $\mathrm{PbGe}_{4} \mathrm{O}_{9}$ (Shashkov et al., 1981), display similar lattice parameters [e.g. 11.344 (2) and 4.750 (2) \AA for $\mathrm{SrGe}_{4} \mathrm{O}_{9}$] and structural topologies but have trigonal/rhombohedral symmetry (space group P321).

Nevskii et al. (1979) report that $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ has Laue symmetry $4 / \mathrm{mmm}$, but the authors were unable to find a structural model in tetragonal symmetry. A reduction of symmetry led to orthorhombic space group Pba2. Nevskii et al. (1979) found a structural model with four Ge , one Ca and eight O-atom positions by a combination of Patterson methods and residual electron-density-map calculations and refined it down to $R=0.024$. Motivated by the availability of small single crystals of the title compound from the hydrothermal experiment (923 K and 0.2 GPa) and large (up to 2 mm long) prismatic crystals from another synthesis experiment, where the title compound appeared by chance, the structure was reinvestigated and a revised model in tetragonal symmetry is given here.

The asymmetric unit of the title crystal structure contains one Ca , three Ge and four O -atom positions (Fig. 1). Fourmembered rings of Ge1 tetrahedra, isolated Ge3 tetrahedra and Ge2 octahedra make up a three-dimensional framework that builds up two types of channels, which are evident in a projection parallel to the c axis (Fig. 2), viz. four-membered almost quadratic and eight-membered elliptical channels with diameters of ~ 3.54 and $3.99-6.25 \AA$, respectively. The large cavities host the eightfold-coordinated Ca sites. In analogy to the topologically related $A B_{4} X_{9}$ compounds mentioned above, the title compound may alternatively be described in terms of two different systems of sheets, which are stacked along the c

Figure 1
A view of the asymmetric unit and some symmetry-related atoms of the title compound, showing 95% probability displacement ellipsoids and the atomic numbering scheme. [Symmetry codes: (i) $-y+1, x,-z+1$; (ii) $-y+\frac{1}{2},-x+\frac{1}{2},-z$; (iii) $-y+\frac{1}{2},-x+\frac{1}{2},-z+1$; (iv) $x, y, z-1$; (v) $-x$, $-y+1, z ;$ (vi) $y-\frac{1}{2}, x+\frac{1}{2},-z+1 ;$ (vii) $y-\frac{1}{2}, x+\frac{1}{2},-z+2 ;($ viii $)-x+\frac{1}{2}, y+\frac{1}{2}$, $z+1$; (ix) $y,-x+1,-z+1$; (x) $x, y, z+1$.]
direction in an $A B A B A \ldots$ sequence. The first of these sheets consists of the four-membered ring of Ge1 tetrahedra and the isolated Ge3 tetrahedra (Fig. 3), while the second sheet is composed of isolated Ge2 octahedra and the Ca sites. In contrast to the title compound, the trigonal structures exhibit three-membered rings of GeO_{4} tetrahedra but no isolated tetrahedra, while the interconnection to a three-dimensional framework via the Ge octahedra is similar.

The Ge1 site, on general position $8 i$, is coordinated by four O atoms as a distorted tetrahedron. Polyhedral distortion parameters are intermediately large (Table 2), which becomes evident when comparing especially tetrahedral angle variance (TAV) and tetrahedral quadratic elongation (TQE) parameters (Robinson et al., 1971) with data previously found in other germanate compounds in the literature. The GeO_{4} tetrahedron in $\mathrm{Cu}\left(\mathrm{Cu}_{0.44} \mathrm{Cr}_{4.56}\right) \mathrm{Ge}_{2} \mathrm{O}_{12}$ (Redhammer et al., 2007) is an instance of a regular tetrahedron with distortion parameters $\mathrm{TAV}=5.32^{\circ}$ and $\mathrm{TQE}=1.0013$, while distinct distortion is found for tetrahedra in, for example, $\mathrm{Ca}_{7.96} \mathrm{Cu}_{0.04} \mathrm{Ge}_{5} \mathrm{O}_{18}$, with $\mathrm{TAV}=79.71^{\circ}$ and $\mathrm{TQE}=1.0186^{\circ}$ for the Ge 2 site (Redhammer et al., 2006). The angular distortion of the Ge 1 tetrahedron in $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ mainly results from the large $\mathrm{O} 2-\mathrm{Ge} 1-\mathrm{O} 3$ bond angle, interconnecting the Ge 1 site via corner-sharing to two neighbouring Ge2 octahedra. Via atoms O 1 and $\mathrm{O} 1(-y+1, x,-z+1]$, the Ge 1 tetrahedron is also connected to two neighbouring Ge 1 tetrahedra, being part of the four-membered $\mathrm{Ge}_{4} \mathrm{O}_{12}$ ring with the $\overline{4}$ axis exactly in the centre of the ring. Within this ring, the Ge1$\mathrm{O} 1-\operatorname{Ge} 1(y,-x+1,-z+1)$ angle is $128.9(2)^{\circ}$, a typical value for $\mathrm{Ge}-\mathrm{O}-\mathrm{Ge}$ angles. In the orthorhombic model of Nevskii et al. (1979), the Ge1 site is split up into two non-equivalent positions (Ge 3 and Ge 4) differing in average $\mathrm{Ge}-\mathrm{O}$ bond lengths (1.757 and $1.768 \AA$) and showing bond-length distor-

Figure 2
A view, along the c direction, of the structure of the title compound.
tions of 0.91 and 0.98%, respectively. By applying the orthorhombic model of Nevskii et al. (1979) to the present data, these differences in the two Ge sites could not be reproduced but rather the structural parameters are almost identical and differ by less than one standard deviation. Also the differences between the orthorhombic and the tetragonal model are less than one s.u. for the Ge sites of the four-membered ring. This also accounts for the Ge2 and Ge3 sites. In comparing with $\mathrm{Cd}_{2} \mathrm{Ge}_{7} \mathrm{O}_{14}$ (Plattner \& Völlenkle 1977), it is evident that the tetrahedron of the four-membered ring displays a smaller average $\mathrm{Ge}-\mathrm{O}$ bond length but a somewhat larger polyhedral distortion in the Cd compound (Table 2).

The isolated Ge3 tetrahedron is located at the cell edges on special position $2 d$ (site symmetry 2.22) within the same sheet as the four-membered GeO_{4} rings. While having four identical bond lengths as a result of symmetry restrictions (Table 1), thus $\mathrm{BLD}=0.0$, it exhibits distinct angular distortion and quadratic elongation, both being larger than for Ge1 (Table 2). All four corners (O4) are shared with neighbouring Ge2 octahedra (corner-sharing) and the Ca sites. In the Cd compound (Plattner \& Völlenkle 1977), the isolated tetrahedron displays somewhat smaller bond and edge lengths and the angular distortion and elongation are lower (Table 2).

The octahedrally coordinated Ge 2 site is on special position $4 d$ (site symmetry ..2). Four of its corners are shared with neighbouring Ge1 tetrahedra and the remaining two with neighbouring Ge3 tetrahedra. The average $\mathrm{Ge} 2-\mathrm{O}$ bond length in the title compound is somewhat larger than that found by Nevskii et al. (1979), but is smaller by $\sim 0.01 \AA$ than that in $\mathrm{Cd}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ (Plattner \& Völlenkle 1977). In comparing

Figure 3
A view, along the c direction, of the structure of the title compound, showing the sheet of four-membered rings of Ge1 tetrahedra and isolated Ge3 tetrahedra only.
$\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ and $\mathrm{Cd}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ with the $A B_{4} \mathrm{O}_{9}$ compounds it is found that average $\mathrm{Ge}-\mathrm{O}$ bond lengths and polyhedral distortion parameters are similar. With increasing size of the eightfold-coordinated A cation $[\mathrm{Cd}=1.07 \AA, \mathrm{Ca}=1.12 \AA, \mathrm{Sr}=$ $1.25 \AA, \mathrm{~Pb}=1.29 \AA$ and $\mathrm{Ba}=1.42 \AA$; Shannon \& Prewitt, 1969], an almost linear increase of $\langle\mathrm{Ge}-\mathrm{O}\rangle$ bond lengths is observable, extending, for example, from 1.746 (2) and 1.762 (2) \AA in the title compound to 1.756 (3) and 1.779 (3) \AA for the tetrahedral sites in $\mathrm{BaGe}_{4} \mathrm{O}_{9}$ (Shashkov et al., 1984). The reverse is valid for the polyhedral distortion parameters, which distinctly decrease with increasing size of the A cations within the $A B_{4} \mathrm{O}_{9}$ series but also decrease from the title compound to $\mathrm{SrGe}_{4} \mathrm{O}_{9}$ (Nishi, 1996), except for the Ge4 tetrahedron, which suffers extreme distortion in $\mathrm{SrGe}_{4} \mathrm{O}_{9}$ (Nishi, 1996), with TAV $=159.9^{\circ}$ and $\mathrm{TQE}=1.0385$. It might be concluded that the trigonal $A B_{4} \mathrm{O}_{9}$ structure type is not stable for cations smaller than Sr owing to this large distortion of the above-mentioned tetrahedral site, thus transforming to the similar tetragonal topology of the title compound.

The Ca^{2+} site is eight-coordinated, with six close and two more distant $\mathrm{Ca}-\mathrm{O}$ bond lengths (Table 1). The two long bonds still contribute 0.08 valence units (v.u.) to the bond valence sum of Ca^{2+}, thus being regarded as bonding. While in $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{14}$, the interstitial space hosting the A cation displays an elliptic shape and a non-uniform distribution of $\mathrm{Ca}-\mathrm{O}$ bond lengths, it is of a more circular shape in $\mathrm{SrGe}_{4} \mathrm{O}_{9}$, displaying a more uniform distribution of $\mathrm{Sr}-\mathrm{O}$ bonds between 2.600 (7) and 2.977 (8) \AA (Nishi, 1996). It is assumed that the larger space requirement of Sr^{2+} (as compared with Ca^{2+}) forces the formation of three-membered GeO_{4} rings, while in the title compound, four-membered rings are still possible.

Experimental

The crystal used for crystal structure redetermination was obtained by chance during attempts to synthesize the clinopyroxene compound $\mathrm{CaFeGe} 2 \mathrm{O}_{6}$ under hydrothermal conditions from a highly saturated CaCl_{2} solution. CaCl_{2} was added to a homogenous mixture of CaCO_{3}, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and GeO_{2} (with stoichiometry $\mathrm{CaFeGe}_{2} \mathrm{O}_{6}$) in a 1:1 ratio. This starting material, together with $10 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$, was placed in a gold capsule, which was welded closed and heated under hydrothermal conditions (923 K and 0.2 GPa , redox conditions of the Tuttle-type autoclave being close to nickel-nickel oxide solid-state buffer, 127 h run duration). The synthesis batch consisted of small idiomorphic crystals of Ge andradite $\mathrm{Ca}_{3} \mathrm{Fe}_{2} \mathrm{Ge}_{3} \mathrm{O}_{12}$ (up to $30 \mu \mathrm{~m}$ in size) and large colourless tetragonal prisms of the title compound (up to 2 mm in length and $200 \mu \mathrm{~m}$ in diameter). $\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$, however, can also be obtained from stoichiometric mixtures of CaO and GeO_{2} using hydrothermal techniques ($673-873 \mathrm{~K}$ and $0.2 \mathrm{GPa}, 10 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}$ added to the Au sample containers). The single crystals obtained here were distinctly smaller (maximum lengths of $80 \mu \mathrm{~m}$).

Crystal data

$\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$	$Z=2$
$M_{r}=844.43$	Mo $K \alpha$ radiation
Tetragonal, $P \overline{4} b 2$ 2	$\mu=18.37 \mathrm{~mm}^{-1}$
$a=11.3391(6) \AA$	$T=295(2) \mathrm{K}$
$c=4.6371(2) \AA$	$0.15 \times 0.08 \times 0.07 \mathrm{~mm}$

Data collection
Bruker SMART APEX
diffractometer
Absorption correction: numerical
via equivalents using X-SHAPE
(Stoe \& Cie, 1996)
$T_{\text {min }}=0.19, T_{\text {max }}=0.28$
7055 measured reflections
764 independent reflections
748 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.057$
$S=1.15$
764 reflections
60 parameters
$\Delta \rho_{\text {max }}=0.73 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.81 \mathrm{e} \AA^{-3}$
Absolute structure: (Flack, 1983), 296 Friedel pairs
Flack parameter: 0.03 (3)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ge1-O3	1.747 (3)	Ge2-O4	1.913 (3)
Ge1-O2	1.758 (3)	Ge3-O4	1.746 (3)
Ge1-O1	1.759 (3)	$\mathrm{Ca} 1-\mathrm{O}^{\text {xi }}$	2.288 (3)
Ge1-O1 ${ }^{\text {i }}$	1.783 (3)	$\mathrm{Ca} 1-\mathrm{O} 2^{\text {viii }}$	2.297 (3)
$\mathrm{Ge} 2-\mathrm{O} 3{ }^{\text {iv }}$	1.863 (3)	$\mathrm{Ca} 1-\mathrm{O} 3$	2.500 (3)
Ge2-O2	1.886 (3)	$\mathrm{Ca} 1-\mathrm{O}^{\text {vi }}$	2.924 (3)
$\mathrm{O} 3-\mathrm{Ge} 1-\mathrm{O} 2$	120.03 (16)	$\mathrm{O} 2-\mathrm{Ge} 2-\mathrm{O} 22^{\text {ii }}$	88.67 (19)
$\mathrm{O} 3-\mathrm{Ge} 1-\mathrm{O} 1$	105.40 (15)	$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Ge} 2-\mathrm{O} 4$	83.83 (13)
$\mathrm{O} 2-\mathrm{Ge} 1-\mathrm{O} 1$	113.58 (14)	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Ge} 2-\mathrm{O} 4$	90.01 (13)
$\mathrm{O} 3-\mathrm{Ge} 1-\mathrm{O} 1^{\text {i }}$	104.00 (14)	$\mathrm{O} 2-\mathrm{Ge} 2-\mathrm{O} 4$	84.58 (13)
$\mathrm{O} 2-\mathrm{Ge} 1-\mathrm{O} 1^{\text {i }}$	102.64 (15)	$\mathrm{O} 4-\mathrm{Ge} 2-\mathrm{O} 4{ }^{\text {ii }}$	102.24 (18)
$\mathrm{O} 1-\mathrm{Ge} 1-\mathrm{O}^{\text {i }}$	110.6 (2)	$\mathrm{O} 4^{\text {vi }}-\mathrm{Ge} 3-\mathrm{O}^{\text {v }}$	114.94 (19)
$\mathrm{O} 3{ }^{\text {iv }}-\mathrm{Ge} 2-\mathrm{O} 2$	92.57 (14)	$\mathrm{O} 4{ }^{\text {vi }}-\mathrm{Ge} 3-\mathrm{O} 4$	116.3 (2)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Ge} 2-\mathrm{O} 2$	94.44 (14)	$\mathrm{O} 4{ }^{\text {v }}-\mathrm{Ge} 3-\mathrm{O} 4$	97.77 (19)

Symmetry codes: (i) $-y+1, x,-z+1$; (ii) $-y+\frac{1}{2},-x+\frac{1}{2},-z$; (iii) $-y+\frac{1}{2},-x+\frac{1}{2}$, $-z+1$; (iv) $x, y, z-1$; (v) $-x,-y+1, z$; (vi) $y-\frac{1}{2}, x+\frac{1}{2},-z+1$; (viii) $-x+\frac{1}{2}$, $y+\frac{1}{2}, z+1$.

The highest diffraction symmetry with reasonable $R_{\text {int }}$ values is 4/mmm; thus, it was decided to facilitate structure solution using direct methods in tetragonal symmetry. Systematic extinction conditions allow space groups $P 4 / m b m, P \overline{4} b 2$ and $P \overline{4} b m$. Only in the noncentrosymmetric space group $P \overline{4} b 2$ was it possible to obtain a good solution with reliable agreement factors and realistic structural topology. For the other two cases it was not possible to obtain R values below 35%, and the coordination chemistry of the cations turned out to be highly unrealistic. It should be stressed that a structural model with tetragonal symmetry could be found and refined down to 5.7% in this study, while Nevskii et al. (1979) stated that they were unable to refine the structure with tetragonal symmetry as none of their models refined below 46%. We also tried to refine the structure of the title compound in orthorhombic symmetry. Here, space group Pba2 of Nevskii et al. (1979) could be confirmed. The orthorhombic model works well too; the final reliability factors, however, are somewhat higher $(w R 2=6.7 \%)$ and thus it was decided that the tetragonal model was valid. In comparing the title compound with $\mathrm{Cd}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$, it became evident that there is a typing error in the atomic coordinates of Plattner \& Völlenkle (1977) for O 2 , viz. $z \mathrm{O} 2$ should read 0.228 instead of 0.288 given in their Table 2.

Data collection: SMART-Plus (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).

Table 2
Selected structural and polyhedral distortion parameters for the title compound compared with $\mathrm{Cd}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$ (Plattner \& Völlenkle, 1977).

	$\mathrm{Ca}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$	$\mathrm{Cd}_{2} \mathrm{Ge}_{7} \mathrm{O}_{16}$
$\langle\mathrm{Ge} 1-\mathrm{O}\rangle$ (A)	1.762	1.741
$\langle\mathrm{O}-\mathrm{O}\rangle(\AA)$	2.871	2.836
BLD^{a} (\%)	0.59	0.92
Volume (\AA^{3})	2.760	2.664
$\mathrm{TAV}^{\text {b }}$ (${ }^{\circ}$)	44.57	45.29
TQE ${ }^{\text {c }}$	1.0112	1.0112
$S^{\text {d }}$ (v.u.)	3.86	-
$\langle\mathrm{Ge} 2-\mathrm{O}\rangle_{\text {(}}(\mathrm{A})$	1.746	1.740
$\langle\mathrm{O}-\mathrm{O}\rangle$ (A$)$	2.847	2.839
BLD^{a} (\%)	0.00	0.00
Volume (\AA^{3})	2.648	2.636
$\mathrm{TAV}^{\text {b }}$ (${ }^{\circ}$)	85.41	70.23
TQE ${ }^{\text {c }}$	1.0208	1.0173
$S^{\text {d }}$ (v.u.)	4.02	-
$\langle\mathrm{Ge} 3-\mathrm{O}\rangle_{(}(\mathrm{A})$	1.888	1.896
$\langle\mathrm{O}-\mathrm{O}\rangle$ (A)	2.670	2.682
BLD^{a} (\%)	0.92	1.72
Volume (${ }^{\text {³}}$)	8.85	8.99
$\mathrm{OAV}^{e}\left({ }^{\circ}\right.$)	30.84	23.79
OQE^{f}	1.0090	1.0074
S^{d} (v.u.)	4.12	-
$\langle\mathrm{Ca}, \mathrm{Cd}-\mathrm{O}\rangle(\AA)$	2.502	2.519
$\langle\mathrm{O}-\mathrm{O}\rangle$ (\AA)	3.039	3.064
BLD^{a} (\%)	8.42	9.91
Volume (${ }^{\text { }}$)	26.29	26.74
S^{d} (v.u.)	2.28	-

Notes: (a) bond length distortion (BLD) $=(100 / n) \sum_{i=1}^{n}\left\{\left[(X-\mathrm{O})_{i}-(\langle X-\mathrm{O}\rangle)\right] /(\langle X-\right.$ $\mathrm{O}\rangle)\}$, where n is the number of bonds, $(X-\mathrm{O})_{i}$ is the central cation-to-oxygen length and $\langle X-\mathrm{O}\rangle$ is the average cation-oxygen bond length (Renner \& Lehmann, 1986); (b) tetrahedral angle variance $(\mathrm{TAV})=\sum_{i=1}^{n}\left(\Theta_{i}-109.47\right)^{2} / 5($ Robinson et al., 1971), where Θ_{i} is the individual $\mathrm{O}-\mathrm{T}-\mathrm{O}$ angle (where T is the tetrahedral cation); (c) tetrahedral quadratic elongation (TQE) $=\sum_{i=1}^{4}\left(l_{i} / l_{t}\right)^{2} / 4$, where l_{t} is the centre-to-vertex distance for a regular tetrahedron whose volume is equal to that of the undistorted tetrahedron with bond length l_{i} (Robinson et al., 1971); (d) bond valence sum (S; Brese \& O'Keeffe, 1991); (e) octahedral angle variance $(\mathrm{OAV})=\sum_{i=1}^{n}\left(\Theta_{i}-90\right)^{2} / 11$ (Robinson et al., 1971); (f) octahedral quadratic elongation (OQE) $=\sum_{i=1}^{6}\left(l_{i} / l_{\mathrm{o}}\right)^{2} / 6$, with $l_{\mathrm{o}}=$ centre to vertex distance for a regular octahedron whose volume is equal to that of the undistorted octahedron with bond length l_{i} (Robinson et al., 1971).

GJR gratefully acknowledges financial support by the 'Fonds zur Förderung der Wissenschaftlichen Forschung (FWF)', Vienna, Austria, under grant No. R33-N10 (ErwinSchrödinger Rückkehr-Stipendium). We thank Peter Doblmayer for translating the paper of Nevskii et al. (1979) from Russian.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3088). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Version 3.0. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (2001). SMART-Plus (Version 5.6) and SAINT-Plus (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Eulenberger, G., Wittmann, A. \& Nowotny, H. (1962). Monatsh. Chem. 93, 1046-1054.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nevskii, N. N., Ilyukhin, V. V., Ivanovam, L. I. \& Belov, N. V. (1979). Dokl. Akad. Nauk SSSR, 245, 110-113.
Nishi, F. (1996). Acta Cryst. C52, 2393-2395.
Plattner, E. \& Völlenkle, H. (1977). Monatsh. Chem. 108, 443-449.
Redhammer, G. J., Roth, G. \& Amthauer, G. (2006). Acta Cryst. C62, i94-i96.
Redhammer, G. J., Roth, G. \& Amthauer, G. (2007). Acta Cryst. C63, i21-i24.
Renner, B. \& Lehmann, G. (1986). Z. Kristallogr. 175, 43-59.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Shashkov, A. Yu., Efremov, V. A., Matsichek, I., Rannev, N. V., Venevtsev, Yu. N. \& Trunov, V. K. (1981). Zh. Neorg. Khim. 26, 583-587.
Shashkov, A. Yu., Rannev, N. V. \& Venevtsev, Yu. N. (1984). Koord. Khim. 10, 1420-1426.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shirvinskaya, A., Grebenshchikov, R. G. \& Toropov, N. A. (1966). Inorg. Mater. 2, 286-288.
Stoe \& Cie (1996). X-SHAPE and X-RED32. Stoe \& Cie, Darmstadt, Germany.
Wittmann, A. (1966). Fortschr. Miner. 43, 230-235.

